Crustal structure and evolution beneath the Colorado Plateau and the southern Basin and Range Province: Results from receiver function and gravity studies

نویسندگان

  • Lamuail Bashir
  • Stephen S. Gao
  • Kelly H. Liu
  • Kevin Mickus
چکیده

[1] Over the past several decades, contrasting models have been proposed for the physical and chemical processes responsible for the uplift and long‐term stability of the Colorado Plateau (CP) and crustal thinning beneath the Basin and Range Province (BRP) in the southwestern United States. Here we provide new constraints on the models by modeling gravity anomalies and by systematically analyzing over 15,500 P‐to‐S receiver functions recorded at 72 USArray and other broadband seismic stations on the southwestern CP and the southern BRP. Our results reveal that the BRP is characterized by a thin crust (28.2 ± 0.5 km), a mean Vp /Vs of 1.761 ± 0.014 and a mean amplitude (R) of P‐to‐S converted wave (relative to that of the direct P wave) of 0.181 ± 0.014 that are similar to a typical continental crust, consistent with the model that the thin crust was the consequence of lithospheric stretching during the Cenozoic. The CP is characterized by the thickest crust (42.3 ± 0.8 km), largest Vp /Vs (1.825 ± 0.009) and smallest R (0.105 ± 0.007) values in the study area. In addition, many stations on the CP exhibit a clear arrival before the P‐to‐S converted phase from theMoho, corresponding to a lower crustal layer of about 12 km thick with a mafic composition. We hypothesize that the lower crustal layer, which has an anomalously large density as revealed by gravity modeling and high velocities in seismic refraction lines, contributed to the long‐term stability and preuplift low elevation of the Colorado Plateau.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New seismic imaging of some tectonic zones in the Iranian Plateau

The Iranian Plateau is characterized by diverse tectonic domains, including the continental collisions (e.g. the Zagros and Alborz Mountains) and oceanic plate subduction (e.g. Makransubduction zone). To derive a detailed image of the crust–mantle (Moho) and lithosphere–asthenosphere (LAB) boundaries in some tectonically units of the Iranian Plateau, we used a large number of S receiver functio...

متن کامل

Support of high elevation in the southern Basin and Range based on the composition and architecture of the crust in the Basin and Range and Colorado Plateau

To explore the nature of how the structure and physical properties of the crust vary from extended to relatively unextended domains we present teleseismic receiver functions which measure crustal thickness, shear wavespeed structure and the Vp/Vs ratio at 12 seismic stations in eastern Arizona. The crustal thickness is∼28 km, increases slightly eastward, and remains nearly uniform beneath the v...

متن کامل

Variation of Lithosphere-Asthenosphere boundary beneath Iran by using S Receiver function

The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions ar...

متن کامل

Thickness of Crust in the West of Iran Obtained from Modeling of Ps Converted Waves

Receiver functions are usually used to detect Ps converted waves and are especially useful to picture seismic discontinuities in the crust and upper mantle. In this study, the P receiver function technique beneath the west Iran is used to map out the lateral variation of the Moho boundary. The teleseismic data (Mb ≥5.5, epicentral distance between 30˚-95˚) recorded from 2004 to 2016 at 17 perma...

متن کامل

Mantle transition zone discontinuities beneath the contiguous United States

Using over 310,000 high-quality radial receiver functions recorded by the USArray and other seismic stations in the contiguous United States, the depths of the 410 km and 660 km discontinuities (d410 and d660) are mapped in over 1,000 consecutive overlapping circles with a radius of 1◦. The average mantle transition zone (MTZ) thickness for both the western and central/eastern U.S. is within 3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011